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Abstract—Online video sharing (e.g., via YouTube or YouKu)
has emerged as one of the most important services in the current
Internet, where billions of videos on the cloud are awaiting
exploration. Hence, a personalized video retrieval system is
needed to help users find interesting videos from big data
content. Two of the main challenges are to process the increasing
amount of video big data and resolve the accompanying “cold
start” issue efficiently. Another challenge is to satisfy the users’
need for personalized retrieval results, of which the accuracy
is unknown. In this paper, we formulate the personalized video
big data retrieval problem as an interaction between the user
and the system via a stochastic process (SP), not just a sim-
ilarity matching, accuracy (feedback) model of the retrieval;
introduce users’ real-time context into the retrieval system; and
propose a general framework for this problem. By using a novel
contextual multi-armed bandit-based algorithm to balance the
accuracy and efficiency, we propose a context-based online big-
data-oriented personalized video retrieval system. This system
can support datasets that are dynamically increasing in size
and has the property of cross-modal retrieval. Our approach
provides accurate retrieval results with sublinear regret and
linear storage complexity and significantly improves the learning
speed. Furthermore, by learning for a cluster of similar contexts
simultaneously, we can realize sublinear storage complexity with
the same regret but slightly poorer performance on the “cold
start” issue compared to the previous approach. We validate
our theoretical results experimentally on a tremendously large
dataset; the results demonstrate that the proposed algorithms
outperform existing bandit-based online learning methods in
terms of accuracy and efficiency and the adaptation from the
bandit framework offers additional benefits.

Index Terms—Big data, video retrieval, online learning, media
cloud, contextual bandit, online learning

I. INTRODUCTION

NLINE video service has proliferated in recent years and

emerged as one of the most important services in the
current Internet. More than 300 hours of videos are uploaded
to the largest online video sharing service website, namely,
YouTube!, every minute, where billions of videos are already
stored in a multimedia-aware cloud (media cloud), which can
be watched, commented on and shared. Due to the gigantic
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base and the rapid sustained growth of online videos, the
content that is stored in the cloud for users can be considered
nearly infinite. However, traditional video retrieval systems
[1], [2] cannot handle such a large volume of data. Moreover,
videos with similar visual information differ substantially
in terms of presentation form and content and users have
preferences. This difference motivates us to propose a novel
method, which can work efficiently in the big data domain
with scalability and provide personalized retrieval results.

Users utilize video web services for a large variety of
reasons; two main reasons are to find videos that they had
found elsewhere or on a particular topic and to find interesting
videos with no specified objective [3]. Hence, the system’s
goal should be to provide personalized retrievals for various
users. To serve these two types of users, our system must have
two types of inputs (we call both of them contexts): users’
query conditions and real-time conditions (e.g., age, gender,
and location). The latter will play an important role, especially
when a user’s query condition is fuzzy, e.g., when searching
“US presidential election”, a user who is at the office may want
to watch the news, whereas a user who is taking a break may
be more interested in animations of presidential candidates’
jokes.

The abovementioned problem demonstrates the demand for
a personalized video big data retrieval algorithm. Existing
personalized retrieval methods such as relevance feedback
(RF) assume the personalization is only reflected by similarity
measures (e.g., color and shape) [4]. We argue that a metric
of a personalized retrieval should consider not only videos’
similarity but also the overall user satisfaction. However, it is
accompanied by the problem that each user’s attitude toward a
video is unknown and ever-changing. Thus, the accuracy in a
personalized retrieval problem is unknown. Thus, in contrast
to the crude settings of other approaches, we formulate the
personalized video big data retrieval problem as an interaction
between the user and the system with an unknown-distribution
model. We utilize SP to model the satisfaction because there
is no context that can completely describe a person. Two users
that have the same context may have different attitudes toward
the same video. A model could better handle the personalized
retrieval problem.

However, most existing works, even various approaches that
were proposed for the large-scale video retrieval problem such
as [6], [7], are based on the similarity matching method, and
their results are fixed according to the dissimilarity between
the query condition and the output. Thus, they will perform
poorly if the accuracy of the retrieval result is unknown. In



addition, the computational cost of calculating the similarity
with a high-dimensional feature is very expensive [8], and
such features consider little information about user feedback,
which should be the most significant performance measure
of a system. Hence, these features are suitable for near-
duplicate video detection but may not satisfy real users’
requirements. Another shortcoming of the stochastic process
feedback model is that the accuracy of the retrieval problem
for a context can only be learned by observing how satisfied
users were with the video when it was retrieved in similar
contexts. Therefore, the retrieval system faces the dilemma
of exploration versus exploitation: the system must search for
a balance between exploration of the most informative videos
with highly uncertain performance and exploitation of the most
positive videos with the highest estimated performance [5]
[35]. Cold start is another challenging issue in big data video
retrieval systems, which is due to very few or even no prior
interaction histories of diverse users and items being available
initially. For this multicase problem, new users are frequently
visiting videos, and new videos are frequently being uploaded;
hence, the “cold start” issue must be tackled. Clustering users
in terms of context and videos according to their properties can
address this issue and enable the system to exploit information
that is obtained from users that have similar contexts and
videos that have similar properties.

To process the stochastic results and solve this big data
multicase problem, we propose a novel contextual online
learning method, namely, a contextual multi-armed bandit
(MAB)-based algorithm, to replace the similarity match-
ing method as a general framework for the personalized
video big data retrieval problem. MAB is one of the sim-
plest and best-performing online learning algorithms [5], [9]
due to its finite-time optimality guarantee when facing the
exploration-exploitation dilemma. By leveraging the online
learning method, the proposed methods can use historical
retrieval results to reinforce future retrievals.

Our proposed retrieval system can be divided into three
parts: indexing video, a context extractor, and a retrieval
algorithm. To balance efficiency and accuracy, the videos are
indexed initially as a binary tree, which is called a cover tree.
The cover tree has a top-down design, and each node is a
video cluster. The size of the clusters is subject to various
restrictions, and videos are organized according to a weak
Lipschitz condition, which is a milder restriction and is similar
to the restrictions of most video service webs. Initially, there
is only one root node, which contains all video indices, and
others are added during the retrieval process. This method is
more suitable for massive, dynamically increasing video data.
Then, the context extractor extracts users’ real-time conditions
and combines them with the query as input. One approach
is to extract from social networks [10] since users do not
fill in much information on video service webs, and most of
them support social login, which allows new users to sign in
with their social network identities, such as their Facebook or
Twitter accounts. Since we do not use similarity matching, the
proposed methods have the property of cross-modal retrieval,
and the query condition can be of any type (e.g., text, image,
example, object or sketch). Since the sources of real-time

conditions can vary over time, the bandit framework is the
optimal choice.

To this end, in contrast to most existing content-based or
text-based retrieval algorithms, we propose two novel con-
textual bandit-based online learning algorithms: the adaptive
cover tree algorithm (ACT) and static-adaptive cover tree
algorithm (SACT). Our algorithms operate in the time-slot
model. At each time slot, the user inputs his context. Then,
the system evaluates each video cluster’s payoff by exploiting
the helpful historical information and selects a video from the
selected video cluster that has the highest estimated payoff.
After receiving the result, the user will feed back a payoff,
namely, the reward in bandit problems. This method follows
stochastic distributions, reflects users’ satisfaction and will
be recorded to facilitate future retrievals. Our algorithm is a
general framework for the personalized video big data retrieval
problem. Hence, our approach can be incorporated with 1)
space-partitioning and dimension-reduction methods in the
video initialization steps, where original videos are mapped,
indexed and partitioned into the video space, cover-tree formu-
lation and context, and 2) similarity measurement algorithms
when a video cluster is selected. The main motivation of SACT
is as follows: via simultaneous learning for a cluster of similar
contexts instead of individual learning for each context, it can
substantially reduce the space complexity to sublinear and
accelerate the learning process. Thus, by sacrificing a small
amount of cold start performance, SACT can help service
providers reduce the resource cost of computing and storing
in the cloud. The SACT cold start performance loss will be
evaluated experimentally.

We use regret to measure the performance of our algorithms,
which is defined as the difference between the expected total
reward the system obtains via the optimal strategy given
complete knowledge about the payoff distribution of all online
videos for all possible contexts and the expected total reward
that can be achieved via our algorithms. In other words, regret
is the total loss that is due to the lack of knowledge about the
payoff distribution. Then, we demonstrate that the proposed
algorithms achieve sublinear regret in the number of users
that have arrived thus far. Hence, for each possible context,
the best video to select can be learned.

The main contributions of this paper are summarized as
follows:

o We formulate the personalized video big data retrieval
problem as a stochastic-process feedback model, which
models an interaction between the user and the system.

e We propose a general framework for the personal-
ized video big data retrieval problem, namely, a novel
context-aware online learning algorithm for real large
datasets, which are ever-increasing in size. This frame-
work achieves a sublinear regret bound; thus, it is an
optimal learning strategy over any specified finite time
interval.

o We take into account users’ real-time conditions in the
retrieval process to realize personalized retrieval.

e Our approach does not require similarity matching.
Hence, it has the property of cross-modal retrieval.



o The space complexity is linear for ACT and sublinear for
SACT. Hence, our algorithms will only slightly increase
the storage burden compared to the cloud; thus, they are
highly suitable for real-time big data applications.

o We also address the issue of cold start via contextualiza-
tion and the bandit’s constant exploration in the learning
process.

The remainder of the paper is organized as follows. In
Section 1II, we describe the related work. In Section III, we
formalize the context-aware online video retrieval problem
and present the system model. In Sections IV and V, we
present our ACT and SACT algorithms and analyze the regret
bounds. A complexity analysis is presented in Section VI
The experimental design and simulation result discussion are
provided in Section VII. Section VIII presents the conclusions
of the paper.

II. RELATED WORK

In recent years, multimedia applications and services have
emerged as a significant part of the Internet, with intense
demands for cloud computing. A media cloud focuses on how
the cloud can provide quality of service (QoS) provisioning or,
specifically, raw resources, such as hard disk, CPU, and GPU,
which are rented by media service providers (MSPs) to serve
users [11], which is the basis of multimedia retrieval over the
cloud.

Video indexing and retrieval have a wide range of appli-
cations and motivate researchers worldwide. An overview of
the process of a video indexing and retrieval framework is
presented in [12]. The whole process can be divided into two
parts: first, extracting feature and indexing videos and, second,
query and relevance feedback. According to the application,
features can be extracted from the video database. Static
features of keyframes [13], [14], object features [15], [16],
and motion features [17], [18] are the three most common
types of features.

By using features, a video should be indexed to facili-
tate video retrieval. Recently, learning-based hashing methods
have become popular for indexing and approximate nearest
neighbor search of large-scale media data [6], [20], [21]. J.
Wang et al. present a survey of learning-based hash algorithms
and categorize them according to their similarity-preservation
properties into pairwise similarity preserving, multiwise sim-
ilarity preserving, implicit similarity preserving, quantization,
and end-to-end hash learning, in which the hash codes are
computed directly from the original object [19]. When hash
functions are learned, only the XOR operation and the bit
count operation on hash codes are needed to compute the
similarity between two videos. However, to generate fixed-
length hash codes, determining keyframes in videos is im-
portant but formidable. Moreover, a hashing algorithm must
store all videos hash codes to measure the similarity by
summing the pairwise similarity between frames’ hash codes,
which leads to high storage and computational consumption
[8], whereas our method only requires similar videos to be
stored together and may not require the details of features’
values. Other methods such as [22] jointly exploit the feature

relationships and the class relationships, which might not be
able to handle big data problems. For state-of-the-art works, in
[23] and its improved version, namely, [24], the authors aim
at improving video hashing by taking temporal information
into consideration. Moreover, in [25], the authors propose a
general framework for incorporating quantization-based meth-
ods into the conventional property-preserving methods. These
approaches perform outstandingly as similarity measurement
methods; however, they have the inherent defects of similarity
measures in personalized retrieval, as mentioned above.

Once the video index has been obtained, the video retrieval
process can begin. According to the query type, a query can
be classified, e.g., as query by examples, query by objects,
or query by keywords. Near-duplicate video retrieval (NDVR)
[26], [27] is an application of query by examples that has been
frequently utilized in recent years. Another benefit of not using
similarity matching is that our method is applicable to queries
of any type if the query condition is being mapped into the
context space. Like the cross-modal hash algorithm that was
proposed in [28], our proposed algorithms have cross-modal
retrieval ability.

Substantial work has been carried out on extracting query
features. For example, in [29], the authors proposed a method
of query by sketch, where trajectories that are drawn by
users are extracted. In [1], the authors normalized both the
descriptions of concepts and the query text and computed the
similarity with the text by using a vector space model. Con-
notations from movie scenes can be extracted and validated to
facilitate retrieval [30], [31]. For users’ real-time conditions,
since video service websites also support social login, we
can learn correlated users’ features from social networks [10].
Meanwhile, both users’ emotions and emotion preferences can
be used as context dimensions to facilitate retrieval [30], [31].
Similar to our starting point, H. Ghosh et al. and D.Vallet et al.
use users’ feedback to provide personalized retrieval output in
[32], [33]. Although their work slightly improves the retrieval
result, it is still based on similarity rather than satisfaction.

One of the most relevant prior works in online learning is
the RF method. Given users’ feedback, the key step in an
RF scheme is the selection of a subset of image features for
constructing a suitable dissimilarity measure and effectively
modeling high-level concepts and user perception subjectivity
[4], [34]. Y. Rui et al. introduce this method into content-
based image retrieval (CBIR) [4]. X. Zhou et al. provide a
review [35], and an evaluation is provided by [36]. Many
RF schemes have been proposed for CBIR [34], [37]- [40];
however, content-based video retrieval has not received suf-
ficient attention, and few RF methods that can be applied to
video retrieval exist. R. Yan er al. propose utilizing pseudo-
relevance feedback from retrieved items that are not similar
to the query to improve the retrieval performance but not
the personalized performance [41]. Shao et al. incorporate
spatiotemporal localization and use a relevance feedback al-
gorithm to enhance the video retrieval performance [42]. 1.
Mironica et al. propose a novel framework for relevance
feedback that is based on the Fisher kernel (FK) for video
retrieval [43]. No RF scheme has been proposed for big data
problems. The primary difference between our approach and
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Fig. 1: Workflow of the retrieval system over a media cloud.

RF methods is that we assume the result of a personalized
video retrieval to be a stochastic process with an unknown
distribution, whereas RF assumes the personalization is only
reflected by the similarity measures. We argue that an unknown
stochastic process feedback model is more general and more
suitable for practical applications of the online video service.
Thus, we use users’ feedback to modify the weights of
subspaces of videos rather than features. Moreover, similar
to most existing information retrieval systems, conventional
RF schemes that track feedback by a user base their decisions
solely on queries and often ignore the search context [50].
This basis typically causes the small sample size problem. To
tackle this problem, in our approach, each user is described by
his/her context and utilizes other users’ historical results. Via
a contextual bandit online learning algorithm, our method can
balance the selection of most informative (exploration) and
most positive (exploitation) images.

Cold start problems, which are due to our exploration of
historical results rather than a similarity measure to facilitate
retrieval, are divided into three types: (a) recommendations by
new users, (b) recommendations for new items, and (c) recom-
mendations for new items by new users [44]. Various state-of-
the-art methods address user-side problems by incorporating
neighbors of new users [44], [45] or introducing external
social information [46]. For the item side, [47] incorporates
additional sources of information about both the users and
items, and [48] uses a matrix factorization technique to address
the problem. [49] aims at proposing a general framework for
dealing with both user-side and item-side cold start problems
simultaneously with an efficient matrix factorization approach
using similarity information. The context-based method is
another important technique for dealing with cold start [47],
[50], [51], which has benefits in terms of both cold start and
accuracy.

The result of personalized video retrieval is typically a
stochastic process. We use an online learning method instead
of hashing or another offline similarity matching approach.
In MAB algorithms, each optional item is named an arm, and
algorithms estimate the mean reward of each item based on the
historical results. By modeling the personalized user features
as contexts, the previous contextual MAB that can deal with
the multiclass classification problem has been used for various

applications, such as image mining [52], traffic prediction [53],
and recommendation systems [54]- [51]. However, these works
require the traversal of all items (arms) before the algorithm is
run, which is difficult to achieve in big data scenarios. Works
such as [51] used a bottom-up design to build an item tree from
the leaf to the root such that they must know the number of
items in advance. [56] and [57] proposed algorithms for con-
tinuous arm space for the optimization problem that are unlike
traditional bandit methods. However, personalized retrieval is
a multiclass classification problem, and the multicase scenario
should be considered. Additionally, by taking users’ real-time
conditions into account, we substantially improve the video
retrieval performance for the first time.

III. PROBLEM FORMULATION

In this section, we formulate the personalized video big data
retrieval problem, which is an interaction between users and
a retrieval system. First, we describe the system model and
important elements. Then, we explain our stochastic process
feedback model in detail.

A. System Model

We illustrate the workflow of the video retrieval system
over the media cloud in Fig. 1. In initialization, the set of
videos, which is denoted as V = {vq,vo,---}, is mapped
into a dy-dimensional measurable space (V,[), where each
video is described as a dy -dimensional feature vector and [:
V2 — R is the video dissimilarity function. Each dimension
of the video feature vector represents one feature of the video.
These features can be text, semantic and high-level features
(HLFs), such as video type, tag, duration, connotation, motion,
objects, and phenomena. The function [ satisfies I(v,v") > 0
for all (v,v') € V2 and I(v,v) = 0. Typically, similar videos
(e.g., v and w3) have a small function value and are close in
the space, and dissimilar videos (e.g., v; and wvs) are distant
from each other. As discussed previously, this space will be
partitioned and organized into the cover tree, which is denoted
as T, as our retrieval index. The tree is stored in the media
cloud with all videos, built and updated dynamically during the
retrieval process. The main focus of this work is the retrieval
steps (represented by blue arrows): if the dissimilarity function



and the video space index are given, the system learns to
retrieve videos that are searched by users.

The users’ context set is denoted by C = {c1,c2, - }.
The system works in a time slot. Let u; and ¢; € C be
the user and context that arrive at time t = 1,2,3,---, and

let v; and r; € [0,1] be the corresponding retrieval result
and received reward, respectively. 7; denotes the cover tree
that we built at time ¢. For any £ > 0, the history space
He == ([0,1] x V x C)' is defined as the space of past
rewards, retrieval results and contexts before ¢, where Hqy = 0.
Specifically, this historical information is our main foundation
for retrieval. As illustrated in Fig. 1, at each time ¢, the
following events occur sequentially: 1) A user u; sends c,
which denotes his/her retrieval request (e.g., a photo of a fire
disaster), together with the real-time condition, to the online
retrieval system. 2) Our system searches H; to find useful
historical results that have a similar context to c¢;. 3) Our
retrieval algorithms calculate and estimate the expected reward
for each video cluster according to these historical results.4)
The leaf node with the highest estimated reward in 7; will be
selected (e.g., h1,%; in Fig. 1). 5) A video v, that belongs to
that node, e.g., video v; of firefighting in our example, will
be the output. 6) Once the user has watched this video, he/she
returns a reward r; to reflect the attitude toward v;, which
will be recorded in H; to facilitate future retrieval. Finally,
T; explores new nodes if the size of an existing node is too
large. All these operations are performed in and the records
are stored in the cloud; hence, users’ computing and storage
resources are not consumed.

B. Context Space Model

We model the dco-dimensional measurable context space
as (C,sc), which includes the context set C and distance
function s¢: C2 — [0,00). Each context ¢ € C is a dc-
dimensional vector, which includes a d,-dimensional query
condition and a dg-dimensional real-time condition of the
user. For simplicity of exposition, we assume that C = [0, 1]9¢.
C only describes users’ context set but not the tracking of a
user. s¢ is utilized to determine the distance between any
two contexts such that sc(c,c¢’) > 0 for all (c,c’) € C? and
sc(e¢,¢) = 0. In Euclidean space C, the function s can be
the Euclidean norm or any other norm. For any measurable
space (e.g., (V,1) or (C,sc)), once the element set S and
the distance function f have been specified, we denote the
maximum dissimilarity of two elements in a subset A C S as
diam(A) = supy yeaf(x,y). In addition, B(s,p) := {s’ €
S : f(s,8") < p} denotes the subset that contains all similar
elements whose distance to s € S is no longer than a constant
p > 0. Since its definition coincides with the geometrical
concept of a sphere, for the context space, we define B(c¢, p)
as a sc¢-ball with radius p > 0 and center c; to identify useful
historical results of current retrieval approaches. Examples are
shown in the right part of Fig. 1.

C. Video Cover Tree

Since millions of content providers are uploading videos
on the Internet, V will expand over time, and our model is

based on the assumption that the massive number of videos
can be viewed as nearly infinite. Thus, we use the binary tree
T to reduce the possible options for retrieval, in which each
node (h,i) is a video cluster at depth h and index ¢ among
the nodes at the same depth and stores the estimated expected
reward of the corresponding video cluster. The area Py, ; C V
corresponds to the video subset in the node (h,%). The root
node is indexed by (0, 1) and satisfies Py 1 = V. The two child
nodes of (h, ) are denoted by (h+1,2i — 1) and (h+ 1, 21).
Since it is a binary tree, for any h > 0 and 1 < i,5 < 2h,
the following holds: Py, ; NPy ; =0 and Pp, ; = Phy1,2i—1 U
Ph+1,2i-

Similar to the above context, we call B(v, p) an [-ball with
radius p > 0 and center v € V, which will be used to restrict
the minimum size of video clusters. Since the cover tree is our
retrieval index, the subset partition should not be arbitrary.
A subset that is too large (i.e., videos in the subset differ
substantially) is useless, as it cannot contain any valuable
information to facilitate retrieval. Meanwhile, a subset that
is too small may cause overfitting phenomena. Thus, both
the maximum and minimum sizes of each node should be
restricted as follows:

Assumption 1 (Cover tree structure). There exist v1,v > 0
and 0 < p < 1 such that for any nodes (h,i), (h,j) € T:

(a)  diam(Pp;) < vip".
(b) vy, ; € Pryi st Bpi i= B(U,Om»7 Vgph) C Ph.

A cover tree that satisfies this assumption can be used as
an index and is both efficient and accurate. This assumption
is not the natural characteristics of the video space but only
the requirements of the format of the input data. Constants
V1,9, p depend on dissimilarity function [ and the original
data characteristics. In practice, p is often approximately 0.5.
We illustrate an example in Fig. 1. Two similar videos, namely,
vo and vs, in the same node should satisfy I(vo,v3) < vyp™.
In addition, diam(Ph, i, ), diam(Ph, i,) > vop"t. Moreover,
our approach is specialized for big data scenarios. Hence,
even after running for a long time, leaf nodes will not merely
contain one item that cannot be divided.

D. Regret Analysis

We use the notation 7(v,c) € [0,1] to relate reward r to
browsed video v and users’ context ¢ (particularly, (v, ¢) =0
means the user does not watch the video). The basic assump-
tion is that the randomness of the reward mainly comes from
users’ diverse mental conditions and a video with a specified
context will lead to a corresponding distribution. Thus, we
assume the distributions of r are independent and identically
distributed (i.i.d.), which only depend on v and c. Hence, we
use [y, = E{r(v,c)} to represent the expected reward that
can be obtained from video v with context c. The reward has
two forms: explicit and implicit. Explicit feedback asks users
to actively return a measurable result (e.g., score or rating), and
implicit feedback is observed from the user’s diverse actions
and reflects the user’s attitude toward the video (e.g., watching
the video or not, or watching duration). Both can reflect user
satisfaction [12].



Algorithm 1 Adaptive Cover Tree Algorithm

Algorithm 2 The Optpath function

1: Input : Parameters v1 > 0, p € (0,1), ¢ > 0, confidence § € (0,1),
and cover tree structure (P,i)p>0,1<i<2h-

2: Imitialize : ¢t = 1, 7; = {(0,1),(1,1),(1,2)}, H®) = 1,U1,1(¢) =
Ul,Z(t) = C’maz-

3: loop

4:  The user inputs the current context c¢; find its p§-neighbor B(ct, pf).

5 for all video clusters (h,i) € 7T backward from the leaf nodes

(H(t)vi)1<i<2H(t) do

6 Update the estimated node’s upper bound Up, ;(t) in Eq. (2).

7: Update the tighter retrieval reward bound By, ;(t) in Eq. (3).

8: end for

9: (ht,it), Pr < Optpath(Ty).

0 The user browses the video that corresponds to vy, ;, and gives his/her

feedback.

11: Go to the next time slot: ¢ = ¢ 4 1.

122 if Th, ;,(t) > 7,(t) AND (he,it) € leaf(Tt) then
13: 7; (—ﬂu{(ht—Fl,QZt —1),(ht+1,2it)}.

14: Unhy+1,2is—1(t) = Uny 41,24, (1) = Crmas-

15: end if

16: end loop

For each cluster (h,%), we randomly select a video vy, ; €
Pr,; to represent the video cluster. At each time ¢, selecting
the node (hy,%;), we output the corresponding video vy, ;, as
the result to the user. Using a fixed option, it is possible to
bound the worst case in the theoretical analysis. The choice
of vp,; changes at every round in experiments and practical
applications. Assuming the maximizer v; = argmax,fiy,c,
exists, we denote the corresponding maximum fiys ¢, by pf.
Each video has a similar impact for similar users, and each
user has a similar reflection on similar videos. This assump-
tion is formalized as the widely adopted Lipschitz condition
assumption.

Assumption 2 (Lipschitz condition). Given two contexts
¢, € C, for each video v € V and t > 0, the following
hold: |/J'v,c - /tv,c" < LCSC(C’ C/) and M;&k — Hv,cy < l(’Uz(, U)’
where L¢ is the Lipschitz constant in the context space.

The Lipschitz condition for contexts and the Lipschitz
constant Lo are only required for theoretical analysis and
need not be known. Meanwhile, the Lipschitz condition for the
video space only requires the expected reward function to be
Lipschitz with respect to the maximum value. This condition
is weaker than the standard condition and is called the local
smoothness assumption.

To measure the accuracy of the system at step ¢, we denote
the regret at t by Ay = uf — . Over n steps, the expectation
regret, which is denoted as R, is defined as

n n n
Ry =EY A= (4 —Ero) =Y (1} = pneir (), (D
t=1 t=1 t=1
where fip, ;,(t) is a short notation for fi,,, , ,. The main
objective of the system is to choose a strategy that minimizes
the total regret R,,. A sublinear regret means the algorithm can
converge to the optimal strategy, since i1, o0 Ry /1 — 0.
In addition, we require a tighter upper bound for a near-
optimal content subset in the theoretical analysis. We define
a near-optimal video as follows. Let ¢ > 0. The subset of
e-optimal videos is defined as V. = {v € V : pf — ty,e, <
€}. In the next section, we prove that our approaches always
output near-optimal videos with high probability. Then, we
characterize the scale of the problem, which refers to how

1: Input : Tree 7¢.

2: Inmitialize : (h,%) < (0,1), P < (0,1), To,1(t) = 70(t) = 1.
3: while T}, ;(t) > 7,(t) AND (h,i) ¢ leaf(T) do
4 if Bpy1,2i—1 = Bp1,2; then

5: (hyi) « (h+1,2i = 1).

6: else

7 (h,t) < (h+1,27).

8 end if

9 P+ PU{(h,9)}.

0: end while

1: Output : (h,:) and P.

TABLE I: Notation

ct The context at time ¢.
vt The retrieval result at time ¢.
Tt The received reward at time t.
(ht,t¢) The cluster that is selected by ACT at time ¢.
V1 The maximum distance in the video space.
Ph.i The corresponding video subset of node (h, ).
Tt The cover tree that has been already built at time .
H(t) The depth of tree 7.
Py The traversal path from the root node to node
(ht,it).
Crmaz A maximum number, which is used

for programming environment supports.

B(ct, pS) An sc-ball with radius p¢ and center c;.
T (B(ct,ps)) | The set of past context arrival times in B(ct, p).
Th,i(t) The number of times the cluster (h, )

has been retrieved in B(ct, pf).
i The indicator function.

1h i (t) The empirical reward of cluster (h, ) at time ¢.
Up, i (t) The estimated reward upper bound
of node (h, %) at time t.
o(¢) min{c16/t,1} (c1,d > 0 are constants).

tt ollog(H)J+1
By,i(t) The tighter reward bound of node (h, %) at time ¢.
T (t) The threshold of selected times for each node.

large the set of e-optimal videos in V is, using the concept of
packing number. For € < e, there exists a packing constant
Cy such that N(V,,1,€') < Cy(€')~%, where N'(V,,1,¢€) is
the maximum number of sphere areas with radius €' that are
disjoint with one another in the region V. with respect to the
distance measure [. Similarly, we denote the minimal number
of sphere areas with radius p > 0 that can cover the context
space C, with respect to the distance measure s by N,(C).
In addition, N,(C) < Ccop~?, where C¢ is the covering
constant of C.

IV. ADAPTIVE COVER TREE ALGORITHM

In this section, we present our ACT algorithm, which
utilizes historical information to facilitate searching for the
optimal retrieval result. In addition, we prove that it achieves
a sublinear learning regret.

A. Algorithm Description

The details of the ACT are shown in Alg. 1. Table I
summarizes the notations that we use in the description and
analysis of our algorithm. The algorithm consists of four main
steps: 1) obtaining input and historical information (Line 4); 2)
updating (Line 5-8); 3) searching for the result and outputting
it (Line 9-11); and 4) expansion (Line 12-15).

1) Obtaining input and historical information: At each
time slot ¢, the system receives a query with the user’s



context, which is denoted as c;. To facilitate the retrieval
process, ACT utilizes historical retrieval results that have
similar context to c;. To formally define the meaning of
“similar”’, we utilize the concept of sc-ball, which is defined
in Section II. Specifically, we consider a relevant ball, namely,
By, pf), in the context space, whose center is ¢; and radius
is p§ = min{1, (logt/t)*} (0 < a < 1), as shown in the right
part of Fig. 1. Via this operation, we select historical data that
are similar to the current scenario and call these historical data
ct’s pg-neighbors. The size of the pf-neighbors decreases with
time, whereas the retrieval accuracy increases. The set of past
context arrival times in the ball B(c, pf) is denoted by

T(Bles,pg)) ={r:7 <t,er € Blet, pf)}e

2) Updating: In the next step of the retrieval process, the
ACT updates the estimated reward of the whole cover tree
based on the pf-neighbor. First, we define two useful variables:
The number of times that video cluster (/, 7) has been retrieved
in the ball is denoted by

>

Th,i(t)
TET(B(ct,p7))
Ty.i() is the total number of times that cluster (h, ¢) has been

retrieved when past users have similar context to ¢;. Then, the
empirical retrieval reward fiy, ;(t) of vy ; is computed as

[in,i(t) = 7 1 Z
hyi (t) c

TET (B(ct,py))
This reward is the sample-average reward in the relevant ball.
Since each node in the tree not only includes vy ; but also
covers a partition of all videos (P}, ;), ACT computes an upper
bound, which is denoted as Uy, ;(t), to represent the estimated
reward upper bound of node (h, ). For each node (h,i) € Ty,
the upper bound Uj, ;(t) is computed as

Hh, = h,ir =i}

Ty

02log(5(t1+))

Thai(t)
The third term represents the uncertainty of fij ;(t) in esti-
mating pp, ;(¢). The sum of these two terms accounts for the
upper confidence bound of p, . [5], where the second term is
the maximum size of the node. Thus, Eq. (2) reflects the upper
bound of the whole node. However, the ACT algorithm relies
on the binary tree 7, and Uy, ;(t) cannot reflect the relation
between node (h,i) and its descendants, which makes our
estimated upper bound loose. Therefore, the tighter retrieval
reward bound, which is denoted as Bj ;(t), is designed to
associate the parent node and child nodes with a tighter upper
bound. More precisely,

Un,i(t) = Bn,i(t) + V1Ph + ()

Uh,i(t)a (ha Z) € lea’f(ﬁ)
Bh,i (t) = Cmaxa Th,z’ (t) ': 0
min[Up (1), je{gil%}fzi} Bi11,4(t)], otherwise.
(€)

Importantly, as expressed in Eq. (3), to determine cluster
(h,%)’s B-value, we must calculate its children’s B-values
first. Hence, the whole updating process must begin from the
leaf nodes, namely, (H(t),4);<;<om, of tree T; and proceed
backward to the root, namely,i(()i, 1). Furthermore, because ¢;
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Fig. 2: Example of how to partition the video space and select
a node.

may correspond to a different value of ¢ > 0 and the pf-
neighbor contains diverse contexts at each step, the updating
process must be repeated at each time slot, which increases
the running time of ACT.

3) Searching for the result and outputting it: To identify
the most similar video that the user retrieves, ACT calls the
Optpath function (Alg. 2) to select the child node that has the
maximum B-value from the root. Then, it obtains a traversal
path, which is denoted as P;, and stops at (hg,i;) (which
denotes the cluster that is selected by ACT at time t), which
is either a leaf node or a cluster that has not been retrieved
sufficiently with respect to a threshold, namely, 75 (¢), with
context ¢;. The threshold 7 (t) = czl()g(g(tlJr))/(phul)2 is
used to reduce the depth of the tree and guarantee that each
node is exploited sufficiently. The choice of this threshold will
be discussed in the next step.

Then, video vy, ;, is output to the user. After the user
browses it, ACT obtains the reward and stores a new record
of (¢, v, 7). An example of how the cover tree partitions
VY and how ACT searches for a video is shown in Fig. 2.
With current context ¢, the optimal video, which is denoted
as vf, is in Py 13. Our ACT calculates the B-values for all
nodes, selects Ps o7 as output and obtains the path from Py ;
to 7)5727.

4) Expansion: In Eq. (2), the last two terms represent the
uncertainty of the estimated reward, whereas the second term
represents the largest possible difference between two videos
in the same cluster, and the third term decreases with the
number of retrievals. When videos in a leaf node have been
retrieved sufficiently, we expand it and add its children to 7.
Specifically, when the third term is smaller than the second
term, the uncertainty is dominated by the node’s size. For
more accurate retrieval, we must partition the cluster further,
expand the tree and set the upper bound U to C,,4; so that
it will be enforced for the newly expanded nodes in the next
step. These occur when T}, ;(t) > 74(t), where

p_2hlog( S(:+) )

Th(t) = &
vi

log [E(tlﬂ]
7h (t)
This dynamic expansion process is a top-down process and
only depends on the range of each nodes contents; hence, new
nodes can be added to the video space with no effect on the
cover tree. ACT performs well for big data problems, and
even after running for a long time, no leaf node will contain
only one video. With the above expansion rule, we present

= . (4)

leh =C




a lemma that bounds the maximum depth of the cover tree,
which makes the retrieval much more efficient.

Lemma 1. Given the retrieval threshold T(t) in Eq. (4),
the depth of tree T, can be bounded as

1 nvi
100 = 51" Sy

Proof: See the detailed proof in [59]. [ |
Lemma 1 proves that the cover tree is expanded at speed
O(logn), which guarantees both the retrieval accuracy and
sublinear cost for traversing the tree. A threshold that is too
large or too small can decrease the accuracy, and a smaller
threshold may lead to a higher cost of exploring a suboptimal
bunch and a longer traversal path.

).

B. Regret Analysis

To bound the total regret, we first prove that the average
rewards of all expanded nodes are within a confidence interval
of empirical estimates with high probability.

Lemma 2. We define the set of all nodes that are possible
in trees with a depth that does not exceed the maximum depth
Hunaw(t) as Ny = Uz peptn(1) < Hona (1) Nodes(T). A high-
probability event is defined as

er={V (h,i) € N;, VT, i(t) =1...t:

[1in,i(t) — Efin,i(t)] <

If c = 1/1—p and5 = 03/p/3v1/t, the event g,
occurs wzth a probability of at least 1 — § /1S,
Proof: See the detailed proof in [59]. ]

By Lemma 2, we bound the gap between the estimated
reward and the expected reward of the suboptimal nodes.
Using the above two lemmas, we obtain the following:

Theorem 1 (Regret Bound of ACT). Let users’ feedback be
i.i.d., suppose assumptions 1 and 2 hold at each time slot t,
and let a = 1/(dy + d¢ + 2). Under the same condition as
in Lemma 2, the expectation regret of ACT R,, up to time n
is

dy +de+1

Rn S % + 6Lcm —+ %TZ d¥+dg+2 (lOg TL) dv+dc+2

L.(d d 2) dytdco+l
it e 585 e
dy —1 d
96Cy Ccop®V log( V 3”1”)( n )531353
(1 — pA+dv))ppedv (1 — p) d%p logn

Proof: See the detailed proof in [59]. ]

By our regret definition, Theorem 1 bounds the gap between
the optimal choice and the expected feedback. According to
the proof, this bound holds with probability 1 —J. However, a
higher § can lead to a lower regret bound. Thus, we empirically
set § = 0.05 to guarantee the performance of our algorithm as
we did in our experiments. To ensure that the mean reward for
all expanded nodes is within the confidence interval with high
probability, we set the tradeoff parameter ¢ = 21/1/(1 — p)
via Lemma 2. Users can change this parameter, which will
increase RZ, . Moreover, Theorem 1 requires the total retrieval
times n > c¢10/e = 0/ p/3v1/e. However, parameters ¢ and p

t=1 t=t; t=t,
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Fig. 3: Illustration of an SACT context partition.

are smaller than 1, and v; is always large. Hence, this lemma
easily satisfies the requirement.

v1, which represents the maximum dissimilarity of any
two videos in the dataset, will be smaller when videos are
organized more regularly. Formally, 1 = sups,, v,ev f(v1,v2).
According to the choice of 75,(t) and Lemma 1, a larger 14
leads to a deeper tree. Moreover, the result of step 2 in the
proof that ¥ — pn, ., (t) < 4v1p" + 2Lcp¢ demonstrates
that in every step, the regret increases with ;. Hence, a more
regular video index or, in other words, a lower rate of change
of the expected reward function can improve the accuracy and
efficiency.

We have proven that Algorlthm 1 achieves sublinear regret

R, = O(n Tagt? (logm) TG ), which guarantees con-
vergence in terms of the average reward. If dy- or d¢ goes to
infinity, the regret approaches linearity. This result is because
as the dimension of the video increases, the number of nodes
that we must explore increases, especially in the first few
layers, where we limit the increase in the number of nodes
by the tree’s structure and the maximum depth in Lemma 1.
Similarly, as the dimension of the context increases, the pf -
covering number of C increases, and p¢, restricts the covering
number growth.

V. STATIC ADAPTIVE COVER TREE ALGORITHM

In the previous section, we proposed a contextual query
method, where we search similar query histories when each
query arrives and find pf-neighbors dynamically. The main
benefit of this method is that we can begin from a large pf to
seek more information, which can be utilized to overcome
the cold start issue step by step. However, this dynamical
partitioning method requires the storage and traversal of the
complete query history, namely, #;, which increases the
computation time and storage requirements. In many particular
scenarios, service providers want to rent additional resources
at lower cost over the cloud for computing and storage and
accelerate the retrieval process; in such cases, the cold start
issue may be less important.

To address this case, we propose a modified algorithm in this
section that partitions the context space into several clusters
for similar contexts before the first query arrives and builds
a cover tree for each cluster to store variables such as the
empirical average reward and retrieval times. When a query
arrives, the algorithm finds the cluster to which c¢; belongs
and explores the corresponding cover tree to find the optimal
video.



Algorithm 3 Static Adaptive Cover Tree Algorithm

1: Input : Parameters v1 > 0, p € (0,1), ¢ > 0, confidence § € (0, 1),
time horizon n and cover tree structure (Ph7i)h>oyl<i<2h,.

: Partition context space into m. parts. -

. Initialize : ¢ = 1; For all a €

W N

[Lme]: TS =

{(07 1)7 (17 1)7 (17 2)}7 Ha(t) = la Uﬁl(t) = UﬁQ(t) = Cmaz-

4: loop

5:  ift =¢* then

6: for all a € [1,m.] do

7: Update tree 7,%, where the process is the same as in lines 5-8
in Alg. 1.

8: end for

9: end if

10:  The user inputs the current context cy; find by, .

11: (hty i), Pr + Optpath(ﬁat).

12: The user browses the video that corresponds to vy, ;, and gives his/her

feedback.

13: Go to the next time slot: ¢ =t + 1.

14: Update the browsing counter T;th"it
reward 11 ,uh i ().

15: Update estlmated retrieval result upper bound U ha t i ().

16: UpdatePuth(T‘” (h,t, Zt) P).

17: Explore the new node via the same process as in lines 12-15 in Alg.
1.

18: end loop

(t) and the empirical average

Formally, we separate the context space into m, parts,
and each part is a subspace with diameter p¢ (denoted as
bi,bz,....,by.), where m, < Cc(pt)~% is the covering
number of the context space and n is the time horizon,
which is known in advance. Given two contexts c,¢’ € b,
(a € [1,m,]), for any video v € V, we have the following:
|H1;,c - ,U1),c/| < chqcy

An illustration is shown in Fig. 3. As contexts arrive,
SACT puts them into the corresponding regions. Each black
point represents a historical record, which has been printed
to facilitate understanding. However, for SACT, all records
that are in the same subspace will be amalgamated into one.
Comparing it with the ACT example in Fig. 1, SACT partitions
the context space into the smallest part at the beginning, which
causes the cold start issue. According to the scenario that is
highlighted in the orange circle, the most valuable historical
result may be stored in another subspace, rather than the part
to which ¢; belongs, which will cause a slight inaccuracy when
comparing it with the ACT, the price of decreasing the time
and space complexities.

For each context subspace b,, we build a cover tree 7.
Let 7° = {T1,72,..., Tm, } be the set of all cover trees. The
notations 7, and H%(t) have the same meanings as 7; and
H(t), respectively, as defined in Section IV for tree 7, and a,
denotes the number of context subspaces to which ¢; belongs.
Since the algorithm partitions the context space in advance but
not dynamically, we call it Static Adaptive Confidence Tree; it
is presented as Alg. 3.

Now, we must redefine various notations. The set of arrival
times of the contexts that have arrived in subspace b, up to
the current time ¢ is denoted as

T(by) ={r:7<t,cr €bg}.

The number of times that node (h,4) in tree 7% has been
browsed is expressed as

Tl?z(t) = Z Khr = h,ir =i}

TET (ba)

The empirical retrieval result ij, ,(¢) of the expected reward
of vy, ; if the context belongs to b, is computed as

() = o ( RS

T TET (ba)

The other notations (Uy; ;(t), Bj; ;(t), and H“(t)), which we
do not define again but to which we add a superscript a, have
the same meaning for the corresponding tree as in Section IV.

Since the relationship between each tree and context par-
tition has been determined at the beginning, and the past
selection time for each node is certain, the update function,
namely, UpdatePath, does not need to update the whole tree
every time; instead, it must update only the path from the
root to the selected node (Alg. 4). Moreover, the third term of
U;:z(t) which is the upper confidence bound, is changed when
t = t*; thus, we must refresh all trees with phase O(log(n)).
This is one of the greatest differences between SACT and
ACT.

The two algorithms adopt the same exploration condition
such that the conclusion of Lemma 1 is valid for SACT holds.
Meanwhile, for SACT, Lemma 3 holds, which draws the same
conclusion as Lemma 2 but considers a different choice of ¢ (¢)

(see the detailed definition and proof in Appendix B).
Theorem 2 (Regret Bound of SACT). Let users’ feedback
be i.i.d. and assumptions 1 and 2 hold at each time slot t.
Then, the expectation regret of SACT R, with time horizon n
is
d d
Rn S %6 + 6Lcm + %nd\‘iidgi; (log n) dV+dc+2

dy +dg+1
ndv+dc+2 (log n) dV+dC+2

Lc(dv +dc +2)

dv +dc +1
96Cy Cop™ ~ log(me S32") ("
(1= pttdv))nsv (1 — p)

dy +do+1
)dv+dc+2 .

logn

Proof: See the detailed proof in [59]. |

Accordin% tJ(r)d t}}g above resullt, SACT has sublinear regret

n = (’)(ndgwg+2 (logn)dvFdc+2) as well; hence, both of
our algorithms have the same convergence rate. To ensure that
m, is not too large, dc must be fixed. Techniques for reducing
the dimension may be useful (we used the method in [55] in
our experiments).

The regret upper bound of SACT has the same order as
that of ACT; however, SACT suffers from the cold start
issue. To mitigate this issue, we can merge the static partition
“dynamically”. Specifically, the context partitioning and the
tree building follow the same method as in SACT. When a
query arrives, we combine the tree to which ¢; belongs with
its neighbors’ to make decisions, e.g., calculate the average of
Hn,i(t) and sum T}, ;(t) (for an unexplored node, set both to
0). All combined trees must be updated according to feedback.
Then, the number of combined neighbors decreases gradually.
This approach can mitigate the cold start issue by sacrificing
running time and maintain the sublinear storage complexity.

VI. COMPLEXITY ANALYSIS

In this section, we discuss the complexities of our algo-
rithms and prove that SACT requires only sublinear storage.
Then, we compare the regret upper bound and time and



TABLE II: Comparison with existing large-scale bandit algorithms

Regret Space complexity Time complexity Context | Infinite arms
a Fdo I
ACR [51] O(T4+4c+21og T) O L K +T) O(T? + KgT) Yes No
aFT 1 2 d_
HCT [57] O(T a+2 (log T) 4+2 ) O(logTd+2Td+2) O(TlogT) No Yes
Ty FdoFT
ACT O(Tdv+dc+2 (logT) dv+dc+2) O(T) O(T?) Yes Yes
Ty FdoFT Ty Fdo ac
SACT O(T dv+dc+2 (log T)dv+dc+2) (’)(logTdv+dc+2Tdv+dc+2) O(T(T/logT)dv+dc+2) Yes yes

Algorithm 4 The UpdatePath function

1: Input : Tree 7;’”, the path P;, browsed node (at, ht, i¢).
2: if (a¢, he,it) € leaf(T,*") then
. a a
i. | Bhf z,(t) <~ Uhf i ().
: else
23 dB;tIl': zt(t) -~ min[UfL‘tt‘it ), manE{Qi—l,Qi}BZEJrth @)
: end i
7: for all (a¢, h,i) € Pr — (at, ht, i¢) backward do
g: dBthi(t) — min[U;jfi(t), maxje{Qi_l’Qi}BZfH’j ®)]-
: end for

space complexities with those of existing large-scale bandit
algorithms.

Space complexity. The following theorem bounds the space
complexity of SACT.

Theorem 3. Let N1 denote the space complexity of SACT
up to time T. Under the same condition as in Theorem 2, we

have
dy +do
(log T dv+dc+2 T dy +do+2 )

EWNT) =

Proof: See the detailed proof in [59]. ]
Theorem 3 proves that our SACT requires only sublinear
storage: we just have to store the corresponding empirical
rewards and visiting times of each node of the tree. However,
for ACT, we must store all historical information (rewards,
watched videos and contexts) and the tree structure separately.
In the worst case, where only one kind of context arrives all
the time and the tree has been fully explored, Theorem 3
is valid for ACT as well if m. = 1. In practical scenarios,
diverse users come with different contexts, which causes the
number of nodes to be much smaller than this bound. Hence,
the storage of ACT is mainly occupied by historical results
‘Hr, which is O(T). Although our approaches cannot reduce
the video storage over the media cloud, due to their low
storage complexity, they only slightly increase the storage
burden on the cloud. Theorem 3 will be used to bound the
time complexity.

Time complexity. The computational cost of ACT can
be divided into three parts: finding pf-neighbors, refreshing
the cover tree and traversing the tree to retrieve the optimal
video. For the first part, ACT must traverse all histories at
each time ¢, for which the computational cost is O(t). Since
Theorem 3 is valid for ACT as well, the number of v1deo

clusters to update cannot exceed O(log T v i e ).
Since the boundedness of the depth is at most O(logt),
the cost of traversing the tree is no more than O(logt).
Hence, up to time T, the computational complexity is O(T2+
log T+ T 56T 1 Tlog T) = O(T?).

For SACT, by Theorem 3, the number of video clusters that

2 dy tdg
must be updated is at most O(log T *vFic+2 T dv+ic+2) with

refresh phase O(logt). Additionally, at each time ¢, SACT

d

must find the context partition ¢; from O((¢/log t)dv+7§c+2)
trees. Then, the cost of both traversing the tree and updating
B and U is O(logt). As a result, the total computational
cost up to time horlzon T is O((logT/T) dv+dc+2TlogT +

T(T/log T) W+ + Tlog T) = O(T(T/ log T) T 4c72 ),

We list the regrets and complexities of our two algorithms
and two existing large-scale bandit algorithms in Table II.
SACT can greatly reduce the computational time and storage.
Compared with [51], our algorithms have much lower regret
and space complexity. Meanwhile, when the number of videos
is not sufficiently large, the ACR in [51] costs less time
than ACT. However, as the number of videos increases, our
approach becomes faster. Hence, our algorithms are more
suitable for big data video retrieval problems. Specifically, if
(logT/T)*+icT T < Kg, ACT has a smaller computational
complexity, where K is the actual number of items.

VII. NUMERICAL RESULTS

In this section, we demonstrate the performance of the-
oretical regret bounds for our algorithms with experimental
results that are based on large-scale real-world datasets. We
evaluate our algorithms in terms of two aspects: 1) learning
performance and 2) personalization. The main objective of the
first aspect is to compare our algorithms with other online
learning and hashing approaches to evaluate the learning
performance as an online learning algorithm. However, owing
to the serious logistical challenges of building a system in
which to run the personalized algorithms on “live” data, all
experiments are run on previously collected offline datasets,
and we build a testbed, which is similar to that in [33], that
consists of a video space, a set of queries, and a set of
hypothetical context scenarios for evaluating the accuracy of
personalized retrieval. Next, we evaluate the personalization
with real-world video searching events, on which the hashing
method cannot be implemented, unfortunately.

A. Dataset Description

In this work, we use one video dataset and one image
dataset to evaluate the performance. For the video dataset,
we crawled 121,460 videos with raw text features, including
name, uploader, categories, duration, rating, views, number of
comments, tags, synopsis and hot comments from YouKu?.
Then, we aggregated all text information (videos name, views,
tags, synopsis and hot comments) into a document and ran

Zhttp://www.youku.com/
API: http://open.youku.com/
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the latent Dirichlet allocation (LDA) algorithm to obtain a 10-
dimensional topic vector. In sum, we obtain a 15-dimensional
feature for describing a video. Since there is no need for our
method to use similarity matching, we do not need to extract
keyframes or HLFs, which substantially reduces our workload
in preprocessing data.

For the personalized retrieval experiment, we randomly
recorded 5.1 million searching events by 568,361 users in
YouKu from Dec. 17-23, 2016. Each user’s searching event
consists of four components: 1) user information: ID, gender,
location, birthday and personal profile; 2) the search time: only
the number of hours is recorded; 3) the text input for query;
and 4) the search result: the first ten results and whether users
click them or not. Then, we deleted events that do not have
sufficient user information and obtained 2.3 million events by
143,265 users.

For the image dataset, we adopted the public NUS-WIDE
dataset. NUS-WIDE contains 269,648 images that have been
downloaded from Flickr, with a total number of 5,018 unique
tags. Ground-truth tags for 81 concepts can be utilized for
evaluation. Each image is represented by a series of features:
a 64-D color histogram, a 144-D color correlogram, a 73-D
edge direction histogram, 128-D wavelet texture, 225-D block-
wise color moments and a 500-D bag of words that is based
on SIFT descriptors. We randomly select data from 100,000
images as queries.

For all aforementioned features, we adopt the methods that
are described in [55] to reduce the dimensionality of the items.
Finally, we obtain a 5-D feature vector of an image and a 9-D
feature vector of a video. According to these final vectors, we
set the parameter v; = /17 to guarantee that Assumption 1
is satisfied. When expanding the cover tree, we divide each
cluster equally; thus, p = 1/2. To ensure the performance, we
empirically set § = 0.05. For simplicity, we take the Euclidean
norm as the dissimilarity function for both spaces.

task (expanding dataset).

task (expanding dataset).

B. Experimental Settings

1) Testing Learning Performance: The evaluation of per-
sonalization is known to be a difficult and expensive task. To
demonstrate the improvement in personalization performance,
we encoded the collected user information as 3-D vectors,
reduced the searching time and aggregated them with a query
as context input. To demonstrate the ability to handle queries
of various types, we design two tasks for evaluating the
learning performance: in Image2Video, we use an image in
NUS-WIDE to retrieve video dataset (dg = 5 + 3,dy = 9),
and in Video2Video, the query video is contained in video
database (do =9+ 3,dy = 9).

To simulate users’ feedback, we must select the ground
truth. For the Image2Video task, we use all 81 concepts that
are provided by NUS-WIDE to search in YouKu. The top 50
videos are labeled as the ground truth, and we define an event
of successful retrieval, which is denoted as a;, as a video v
that is labeled by the query image’s tags. For the Video2Video
task, we use video’s title to search in YouKu, and the top 30
videos are labeled as the relevant videos. A successful retrieval
event, which is denoted as a;, is defined as a relevant video
v, of the query. Then, the precision (reward) and the regret at
time ¢ can be computed as r; = $,,1,,/10 and Ay =1 — 7y,
where s, € [0, 10] is based on the score of video/query/user
tuples that we rated manually.

2) Personalized Retrieval: For the personalized retrieval
experiment, we demonstrate how much the proposed personal-
ized retrieval algorithm can influence the results and compare
our work with others over a real-world searching dataset.
Under the experimental datasets that are specified above, we
run the five algorithms with context (contextual) and without
context (context-free) and set 7' = 100000. For the contextual
task, users’ information, searching time and text input are
encoded and reduced to dc = 5 as a contextual group via
the process that is discussed above. Then, we only encode



the searching time and text input as a context-free group. To
remove the effect of the number of context dimensions, it is
generated as dc = 5 by setting all users’ information to the
same values. Two groups will be used as input to retrieve the
video dataset (dy = 5) separately.

To obtain an unbiased evaluation of our online algorithms
on this offline dataset, we run an experiment that is similar
to that in [55]: at each time slot, we repeatedly and randomly
select a searching event until the output v; belongs to the
corresponding searching result. Then, we set the precision
(reward): v, = I{v; was clicked}.

3) Methods to be Compared: To evaluate the retrieval qual-
ity, we compare the proposed algorithms with several state-of-
the-art algorithms: two large-scale bandit algorithms, namely,
the adaptive clustering recommendation algorithm (ACR) [51]
and the high-confidence tree algorithm (HCT) [57]; a cross-
modal supervised hashing algorithm, namely, semantic cor-
relation maximization (SCM) [60]; and a relevance feedback
algorithm, namely, the Fisher kernel (FK) relevance feedback
approach [43]. For the Video2Video task, we also compare
our algorithm with a state-of-the-art content-based hashing
algorithm: SSVH [24]. Most codes and suggested parameters
of these methods are available from the corresponding authors,
and we set the code length to 32 bits. HCT is a context-free
algorithm, as it views all inputs as being of the same type.
To modify it into a retrieval problem, we simply aggregate
the d{,-dimensional query conditions and the dy -dimensional
video vectors as the arm of HCT. For hashing methods,
we take 5% of datasets as the query sets and the rest as
training sets and the retrieval database. For ACR, the epoch
E = min{L, |log,(T)|}. Since each leaf node in ACR only
contains one item, the depth of the tree is L = 17, and the
time horizon 7' = 10°. Thus, E = |logy(T)| = 16. For the
FK RF algorithm, we select their Global FK RBF framework
since frame aggregation FK RBF is too slow, as it requires
more than 4 seconds for each retrieval.

In addition, we report the time and space consumption of all
algorithms. All the experiments are implemented and run on
our university’s high-performance computing platform, whose
GPU reaches 18.46 TFlops and SSD cache is 1.25 TB.

C. Result on Testing Learning Performance

In this subsection, we show the following: 1) our regret
bounds are sublinear and the time-averaged regret converges
to 0; 2) our algorithms can handle various query types; 3)
our algorithms do not suffer severely from the cold start
problem; 4) SACT can substantially decrease the time and
storage complexities; and 5) our approaches are scalable.

1) Overall Comparison with Baseline: First, we run the
experiment on a static dataset, which retrieves the whole
video dataset at the beginning. We present the results of the
Video2Video task in Fig. 4 and Fig. 5 and the Image2Video
task in Fig. 6 and Fig. 7. From the above four figures, we
observe the following: 1) compared with other learning meth-
ods, our algorithms have lower regret bounds and converge
much faster in the large-scale setting; 2) compared with other
retrieval methods, our proposed online learning algorithms

can learn while continuously improving the retrieval accuracy;
3) the hashing method performs worse than the proposed
contextual online learning method, as it has a poor ability
to process the stochastic result of personalized retrieval; 4)
based on the nearest-neighbor search, the FK RF method has
a smoother average regret decline, but its poor performance
renders it unsuitable for personalized video big data retrieval;
and 5) the regret for the Video2Video task is much better
compared to the Image2Video task, especially for SCM. We
use a higher dimension requirement for the query, which
means that users provide more detailed information. Moreover,
using videos as queries strengthens the connection between
the query and the retrieved videos. However, the selection
of the ground truths for various tasks may also impact the
regret. In the Video2Video task, the score of the task depends
more on similarity compared to the Image2Video task. For the
same reason, the regret of the Video2Video task changes more
smoothly than the regret of the Image2Video task.

Furthermore, in Fig. 5 and Fig. 7, fluctuations are observed
at the beginning of the learning method. However, our algo-
rithms learn the map from queries to videos fast and enter a
smooth descent stage of average regret, which demonstrates
overcoming of the cold start issue. Compared with the ACT,
SACT suffers a longer and more severe fluctuation period,
which is in line with our expectations.

Next, to demonstrate the ability to handle big data, we use
an expanding dataset. We generate the expanding dataset by
setting 20,000 videos as the initial video space. Then, the
rest of the videos are added to the video space randomly at
each round. The comparison results of regret are presented
in Fig. 8 and Fig. 9. Our proposed online learning methods
have inconspicuous and acceptable performance loss when
facing the expanding dataset. The long-term average regrets of
ACT and SACT are not influenced substantially. However, for
similarity-based methods, SCM, SSVH, and FK RF, the loss
increases nearly linearly. Hence, our top-down tree structure
can support big data problems.

In addition, we present the results of the Image2Video task
with various query dimensions in Fig. 10. Specifically, we
run our ACT algorithm with three context dimensions: the 3-
D feature that is described above, the 64-D color histogram
features that are provided by the dataset, and only the 1-
D concept feature, which contains 81 ground-truth concepts.
From Fig. 10, the total regret up to time 10° with the 5-
D feature is 69.42% lower than that with the 64-D feature
and 71.81% lower than that with the 1-D feature. This result
demonstrates that query dimensions that are too high/low may
cause redundancy/lack of information and lead to a large
regret; meanwhile, different features may lead to different
retrieval performances.

2) Space Cost: In this subsection, we study the space costs
of the Image2Video task for our two algorithms compared
with other learning methods. Space costs of up to 100,000
retrievals are recorded and listed in Table III. This storage
does not include the space cost that is incurred by the video
dataset.

According to the table, our two algorithms have acceptable
space costs. SACT dramatically reduces the storage; hence,
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TABLE III: Space cost (kb)

Retrieval Times x10%

Algorithm | 1 5 8 10
ACT 361 4616 21234 33796 42530
SACT 328 2218 9014 11583  1469.1
HCT 487 3227 11689 16092 19205
ACR 1026 9672 45420 70964 8799.7

it is highly suitable for big data problems. Another important
finding is that the impact of increasing the dimensions is more
serious for SACT than ACT because the increasing dimensions
cause ACT to move far away from the worst case, in which
contexts of only one type are arriving.

3) Time Cost: We investigate the running times of the
proposed ACT and SACT algorithms in comparison with the
baselines of bandit methods. We conduct experiments on two
tasks to analyze the time consumption. The time costs of each
method are shown in Fig. 11 and Fig. 12. The following are
observed. 1) The average running times of ACT for a single
retrieval are 0.0464/0.04501s for the two tasks, and those of
SACT are 0.01228/0.0023765s. A substantial amount of time
is spent updating cover trees. By limiting the learning period,
our proposed algorithms can realize a higher response speed.
2) SACT can substantially reduces the computational cost as
well; however, it is highly influenced by d¢. In contrast, ACT
still has a stable result. The results coincide with those for
the space cost. Hence, these two algorithms are applicable to
different scenarios. 3) ACR requires a substantial amount of
time to traverse nodes. Thus, it cannot be applied to real large-
scale scenarios. 4) HCT has the highest speed since it does
not process the context data. Hence, HCT has low retrieval
precision. 5) FK RF has a linear time cost at nearly 1.7 seconds
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preretrieval. In summary, the proposed algorithms can perform
high-precision retrieval efficiently in big data problems.

D. Results on Personalized Retrieval

In this subsection, we present the results of utilizing context
information. First, we define the learning gain of algorithm
w1 over algorithm 7y as (Ar, 4 — Aryt)/Ar, 1, Where Aq,
denotes the average accuracy of algorithm 7 at time ¢. Then,
we present the average accuracies and gain in Table IV. More-
over, we calculate the gain of each algorithm in the contextual
group over itself in the context-free group and list the results in
Table V. ACT and SACT significantly outperform the existing
works, especially the context-free algorithm. The RF method
outperforms other online learning methods; however, it has
weaker performance than our method, which demonstrates
that the stochastic process feedback model performs better
than the previous model. Comparing with the result in Fig.
4-7, there are notable improvements in accuracy for every
algorithm. In our analysis, this improvement is because the
score in the above experiments, which we rated manually, has
higher randomness. However, in these real-world searching
data, there are hot videos that the majority of people love,
which result in a much easier learning process. Moreover,
with the help of real-world users’ context, SACT can converge
to a similar performance to ACT after a long-term run. This
result demonstrates that the sacrifice of SACT performance
mainly concerns the issue of cold start and users’ context can
substantially alleviate the loss.

In Table V, we compare each algorithm with itself under
two scenarios. Three contextual algorithms have an increase
of approximately 6 — 10% in average accuracy, whereas the



TABLE IV: Influence of context.

Retrieval Times x 10% (context-free)

Retrieval Times x 107 (contextual)

Task Algorithm 0.1 1 5 10 0.1 1 5 8 10
ACT 323% 7459% 8158%  S431%  S401%  7058%  8063%  8938%  9020%  9045%
SACT 6438% 73.82%  8038%  82.63%  8291%  6921%  7839%  88.64%  8932%  89.35%
Average HCT 3531% 38.84%  39.88%  4021%  4038%  3381%  38.65%  39.98%  3933%  4026%
Accuracies ACR 4331% 4981%  S358%  5523%  55.66%  A146%  5138%  5881%  60.32%  61.16%
FK RF 5462% 5738%  6142%  6438%  6502%  5512%  57.64%  6143%  63.96%  65.14%
ACT over HCT ~ 79.07%  92.04%  10456% 11097% 110.28% 108.75% 108.62%  123.56%  12934%  124.14%
SACT over HCT ~ 82.33%  90.06% 101.55% 105.50% 105.32% 10470% 102.82% 121.71% 127.10%  121.93%
Gain ACT over ACR  4599% 49.45%  52.26%  53.59%  52.55%  4871%  56.93%  51.98%  49.53%  47.55%
SACT over ACR  48.65% 4820%  50.02%  49.61%  4896%  4583%  5257%  50.72%  48.08%  46.09%
ACT over FK RE  1576% 30.00%  32.82%  31.76%  30.59%  28.05%  39.89%  4550%  41.03%  38.53%
SACT over FK RF  17.87%  28.65%  30.87%  2835%  27.51%  2556%  36.00%  4429%  39.65%  37.17%

TABLE V: Gain of the contextual group over the context-free
group.

Retrieval Times x 107

0.1 1 5 8 10
ACT over ACT 11.62%  8.10% 9.56% 6.33% 6.28%
SACT over SACT 7.50% 6.19% 10.28%  8.10% 7.77%
HCT over HCT -4.25% -049%  0.25% -220%  -0.30%
ACR over ACR 9.58% 3.15% 9.76% 9.22% 9.88%
FK FR over FK FR  0.92% 0.45% 0.02% -0.65%  0.18%

performance of HCT changes little. ACT can obtain more
information than SACT at the beginning; hence, the increase
in the first 1000 retrievals is higher, which can be up to
11.62%. More importantly, the largest increase that is obtained
by using users’ conditions is not in the retrieval accuracy
but in the learning speed of the algorithms. The algorithms
that use context can obtain much higher accuracy in less
time. Therefore, we demonstrate from another aspect that our
contextual algorithms overcome the cold start issue.

1) Cold Start Issue: To further demonstrate the ability to
deal with new users, we randomly select 20,00 users with
various ratios of cold users to compose 11 new datasets (e.g.,
0%, 10%, and20% - - -), where a cold user is defined as a
user who has performed fewer than 5 searches. We repeat
the experiment 10 times on each dataset, record the average
results, and show them in Fig. 13 and Fig. 14. According
to the two figures, the influence of cold users can be divided
into three cases. When the ratio is less than (or equal to) 50%,
the ratio of cold users has a small effect, and our algorithms
have similar accuracy in these datasets. When the ratio is
between 50% and 80%, the regret increases slightly. When the
ratio exceeds 80%, the regret increases substantially because
the datasets are full of cold users, and it is difficult to find
useful histories. However, even in the worst-case scenario, the
average regrets decrease over time, especially for ACT. Hence,
the problem still can be learned, although a longer time is
required. As a result, our approaches can deal with the cold
start issue. Comparing the results of the two methods, SACT
suffers from the cold start issue slightly more severely. Thus,
although ACT can continuously improve the accuracy, SACT
performs better in terms of storage and running time, which
will be demonstrated later.

2) Scalability: In this subsection, we demonstrate that our
algorithms have the ability to scale up. In particular, we divide
the video dataset into two parts, of which each has half the

videos of the complete dataset. First, the algorithms are only
run on one part of the dataset. When ¢t = 500, we add another
part into the experiment to simulate scaling up of videos.We
calculate the gains of all algorithms over the random algorithm
and show the result in Fig. 15. After ¢ = 500, none of
the four algorithms has substantial performance loss since
all of them are scalable. The performance increases after
t = 500 are due to the decreased performance of the random
algorithm. The performance increases against the random
algorithm are 68.32%, 68.32%, 53.09%, and 39.04% for the
ACT, SACT, ACR and HCT algorithms, respectively. Our
algorithms outperform the others quickly since 500 retrieval
times is a relatively short duration.

E. Sensitivity Analysis

In this subsection, we test the ability of the proposed
algorithms in dealing with errors in the input. We add random
noise to the user’s context and evaluate the performances of
two algorithms. In detail, we set ¢; = ¢; + 0.3p, where p is
a do-dimensional vector and each component obeys an i.i.d.
Gaussian distribution p* ~ N'(0,1) (i € [1,d¢]). We multiply
p by a constant, namely, 0.3, to restrict the noise size and
prevent the signal from being overwhelmed by the noise. The
results of the learning performance testing are shown in Fig.
16 and Fig. 17.
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The noise has a strong influence on the algorithm per-
formance, which causes irregular fluctuations of the average
regret. Compared with the results in Fig. 5 and Fig. 7, in
the Video2Video task the performance loss of ACT is 6.28%,
the loss of SACT is 23.75%, and in the Image2Video task the
performance losses of ACT and SACT are 6.97% and 27.80%,
respectively. Our algorithms can learn the retrieval problem
and achieve accurate results. ACT substantially outperforms



SACT, which demonstrates that the dynamic partitioning
method yields a more robust input context.

Moreover, we evaluate the robustness of the two algorithms
in the personalized retrieval scenario. We run the experiment
10 times and list the accuracy losses for two algorithms in
Table VI

From the results, the influence of noise on contextual
retrieval is larger compared to context-free retrieval since for
contextual retrieval our algorithms must learn more informa-
tion from the input. Additionally, the influence on SACT is
greater than on ACT. We also observe that the regret loss
is lower at ¢ = 1000 than at ¢ = 10* when t > 10°,
the loss declines to an acceptable value (approximately 5.5%
for ACT and approximately 20% for SACT). We conjecture
that the reason that the loss initially rises and subsequently
falls is that at ¢ = 1000, our algorithms are still in the
initial learning phase and have not built an accurate map from
the input to the videos, whereas at t = 10*, without noise,
our algorithms have learned the retrieval problem relatively
accurately; however, noise obstructs this process severely.
Nevertheless, the results demonstrate that over a long run,
our contextual online learning approach can still learn the
personalized retrieval problem.

TABLE VI: Influence of noise.

Retrieval Times x 10%

Task Algorithm

0.1 1 10 100
Contextual ACT 16.32%  37.43%  6.72% 5.63%
SACT 12.59%  46.67%  26.04%  20.93%
Context-free ACT 15.44%  35775%  5.93% 5.17%
SACT 16.38% 46.81% 24.60%  18.23%

VIII. CONCLUSIONS

In this paper, we propose two contextual online learning
algorithms, namely, ACT and SACT, for the large-scale video
retrieval problem. We use the contextual bandit framework
and prove a sublinear regret bound. The main benefits of
our approaches are as follows: 1) they fully utilize the users’
feedback to achieve better results; 2) as they learn, the average
error converges to zero; and 3) they do not require similarity
matching and have more general applications in big data
settings. To relate a user’s query to a video, we use the
concept of context and consider users’ real-time conditions.
In future works, determining how to further reduce the time
and space complexities may be a fundamental objective of our
investigations.
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